Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Immunol ; 44(3): 62, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363432

RESUMO

PURPOSE: Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS: We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS: The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION: We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.


Assuntos
Infecções por Mycobacterium , Mycobacterium bovis , Recém-Nascido , Humanos , Predisposição Genética para Doença , Interferon gama , Infecções por Mycobacterium/genética , Homozigoto
2.
Cell ; 187(2): 390-408.e23, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38157855

RESUMO

We describe a human lung disease caused by autosomal recessive, complete deficiency of the monocyte chemokine receptor C-C motif chemokine receptor 2 (CCR2). Nine children from five independent kindreds have pulmonary alveolar proteinosis (PAP), progressive polycystic lung disease, and recurrent infections, including bacillus Calmette Guérin (BCG) disease. The CCR2 variants are homozygous in six patients and compound heterozygous in three, and all are loss-of-expression and loss-of-function. They abolish CCR2-agonist chemokine C-C motif ligand 2 (CCL-2)-stimulated Ca2+ signaling in and migration of monocytic cells. All patients have high blood CCL-2 levels, providing a diagnostic test for screening children with unexplained lung or mycobacterial disease. Blood myeloid and lymphoid subsets and interferon (IFN)-γ- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-mediated immunity are unaffected. CCR2-deficient monocytes and alveolar macrophage-like cells have normal gene expression profiles and functions. By contrast, alveolar macrophage counts are about half. Human complete CCR2 deficiency is a genetic etiology of PAP, polycystic lung disease, and recurrent infections caused by impaired CCL2-dependent monocyte migration to the lungs and infected tissues.


Assuntos
Proteinose Alveolar Pulmonar , Receptores CCR2 , Criança , Humanos , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/diagnóstico , Receptores CCR2/deficiência , Receptores CCR2/genética , Receptores CCR2/metabolismo , Reinfecção/metabolismo
3.
Cell ; 186(23): 5114-5134.e27, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37875108

RESUMO

Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.


Assuntos
Interferon gama , Janus Quinase 2 , Infecções por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferon gama/imunologia , Interleucina-12 , Interleucina-23 , Janus Quinase 2/metabolismo , Mycobacterium/fisiologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Proteínas Oncogênicas/metabolismo
5.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736301

RESUMO

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Assuntos
COVID-19 , Mycobacterium , Criança , Humanos , Interferon gama , SARS-CoV-2 , Interferon-alfa , Fator Regulador 1 de Interferon
6.
Cell Genom ; 3(2): 100248, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36819665

RESUMO

Ancient genomics can directly detect human genetic adaptation to environmental cues. However, it remains unclear how pathogens have exerted selective pressures on human genome diversity across different epochs and affected present-day inflammatory disease risk. Here, we use an ancestry-aware approximate Bayesian computation framework to estimate the nature, strength, and time of onset of selection acting on 2,879 ancient and modern European genomes from the last 10,000 years. We found that the bulk of genetic adaptation occurred after the start of the Bronze Age, <4,500 years ago, and was enriched in genes relating to host-pathogen interactions. Furthermore, we detected directional selection acting on specific leukocytic lineages and experimentally demonstrated that the strongest negatively selected candidate variant in immunity genes, lipopolysaccharide-binding protein (LBP) D283G, is hypomorphic. Finally, our analyses suggest that the risk of inflammatory disorders has increased in post-Neolithic Europeans, possibly because of antagonistic pleiotropy following genetic adaptation to pathogens.

7.
Sci Immunol ; 8(80): eabq5204, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36763636

RESUMO

Patients with autosomal recessive (AR) IL-12p40 or IL-12Rß1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.


Assuntos
Interferon gama , Interleucina-23 , Infecções por Mycobacterium , Mycobacterium , Humanos , Predisposição Genética para Doença , Interleucina-17/genética , Interleucina-23/genética , Infecções por Mycobacterium/imunologia
8.
Science ; 379(6632): eabo3627, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538032

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Assuntos
COVID-19 , Citocinas , Endorribonucleases , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica , Criança , Humanos , COVID-19/imunologia , Citocinas/genética , Citocinas/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA de Cadeia Dupla , SARS-CoV-2/genética , Síndrome de Resposta Inflamatória Sistêmica/genética
9.
J Clin Immunol ; 43(2): 406-420, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36308662

RESUMO

Fulminant viral hepatitis (FVH) caused by hepatitis A virus (HAV) is a life-threatening disease that typically strikes otherwise healthy individuals. The only known genetic etiology of FVH is inherited IL-18BP deficiency, which unleashes IL-18-dependent lymphocyte cytotoxicity and IFN-γ production. We studied two siblings who died from a combination of early-onset inflammatory bowel disease (EOIBD) and FVH due to HAV. The sibling tested was homozygous for the W100G variant of IL10RB previously described in an unrelated patient with EOIBD. We show here that the out-of-frame IL10RB variants seen in other EOIBD patients disrupt cellular responses to IL-10, IL-22, IL-26, and IFN-λs in overexpression conditions and in homozygous cells. By contrast, the impact of in-frame disease-causing variants varies between cases. When overexpressed, the W100G variant impairs cellular responses to IL-10, but not to IL-22, IL-26, or IFN-λ1, whereas cells homozygous for W100G do not respond to IL-10, IL-22, IL-26, or IFN-λ1. As IL-10 is a potent antagonist of IFN-γ in phagocytes, these findings suggest that the molecular basis of FVH in patients with IL-18BP or IL-10RB deficiency may involve excessive IFN-γ activity during HAV infections of the liver. Inherited IL-10RB deficiency, and possibly inherited IL-10 and IL-10RA deficiencies, confer a predisposition to FVH, and patients with these deficiencies should be vaccinated against HAV and other liver-tropic viruses.


Assuntos
Hepatite Viral Humana , Interleucina-10 , Humanos , Interleucina-10/genética , Irmãos , Interferon gama/genética
10.
Science ; 376(6599): eabm6380, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35587511

RESUMO

The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.


Assuntos
Toxinas Bacterianas , Síndrome de Cri-du-Chat , Endopeptidases , Haploinsuficiência , Proteínas Hemolisinas , Infecções Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas/imunologia , Síndrome de Cri-du-Chat/genética , Síndrome de Cri-du-Chat/imunologia , Endopeptidases/genética , Haploinsuficiência/genética , Haploinsuficiência/imunologia , Proteínas Hemolisinas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/genética , Necrose , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia
11.
J Clin Immunol ; 42(6): 1244-1253, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35585372

RESUMO

BACKGROUND: Autosomal recessive (AR) PKCδ deficiency is a rare inborn error of immunity (IEI) characterized by autoimmunity and susceptibility to bacterial, fungal, and viral infections. PKCδ is involved in the intracellular production of reactive oxidative species (ROS). MATERIAL AND METHODS: We studied a 5-year old girl presenting with a history of Burkholderia cepacia infection. She had no history of autoimmunity, lymphocyte counts were normal, and no auto-antibodies were detected in her plasma. We performed a targeted panel analysis of 407 immunity-related genes and immunological investigations of the underlying genetic condition in this patient. RESULTS: Consistent with a history suggestive of chronic granulomatous disease (CGD), oxidative burst impairment was observed in the patient's circulating phagocytes in a dihydrorhodamine 123 (DHR) assay. However, targeted genetic panel analysis identified no candidate variants of known CGD-causing genes. Two heterozygous candidate variants were detected in PRKCD: c.285C > A (p.C95*) and c.376G > T (p.D126Y). The missense variant was also predicted to cause abnormal splicing, as it is located at the splice donor site of exon 5. TOPO-TA cloning confirmed that exon 5 was completely skipped, resulting in a truncated protein. No PKCδ protein was detected in the patient's neutrophils and monocyte-derived macrophages. The monocyte-derived macrophages of the patient produced abnormally low levels of ROS, as shown in an Amplex Red assay. CONCLUSION: PKCδ deficiency should be considered in young patients with CGD-like clinical manifestations and abnormal DHR assay results, even in the absence of clinical and biological manifestations of autoimmunity.


Assuntos
Doença Granulomatosa Crônica , Criança , Pré-Escolar , Feminino , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Humanos , NADPH Oxidases/genética , Sítios de Splice de RNA , Espécies Reativas de Oxigênio , Explosão Respiratória
12.
J Clin Immunol ; 42(5): 975-985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338423

RESUMO

BACKGROUND: Autosomal recessive (AR) complete IRF8 deficiency is a rare severe inborn error of immunity underlying an absence of blood myeloid mononuclear cells, intracerebral calcifications, and multiple infections. Only three unrelated patients have been reported. MATERIALS AND METHODS: We studied an Argentinian child with multiple infectious diseases and severe pulmonary alveolar proteinosis (PAP). We performed whole-exome sequencing (WES) and characterized his condition by genetic, immunological, and clinical means. RESULTS: The patient was born and lived in Argentina. He had a history of viral pulmonary diseases, disseminated disease due to bacillus Calmette-Guérin (BCG), PAP, and cerebral calcifications. He died at the age of 10 months from refractory PAP. WES identified two compound heterozygous variants in IRF8: c.55del and p.R111*. In an overexpression system, the p.R111* cDNA was loss-of-expression, whereas the c.55del cDNA yielded a protein with a slightly lower molecular weight than the wild-type protein. The mutagenesis of methionine residues downstream from c.55del revealed a re-initiation of translation. However, both variants were loss-of-function in a luciferase assay, suggesting that the patient had AR complete IRF8 deficiency. The patient had no blood monocytes or dendritic cells, associated with neutrophilia, and normal counts of NK and other lymphoid cell subsets. CONCLUSION: We describe the fourth patient with AR complete IRF8 deficiency. This diagnosis should be considered in children with PAP, which is probably due to the defective development or function of alveolar macrophages.


Assuntos
Doenças Transmissíveis , Proteinose Alveolar Pulmonar , Criança , DNA Complementar , Humanos , Lactente , Fatores Reguladores de Interferon/genética , Masculino , Monócitos , Proteinose Alveolar Pulmonar/diagnóstico , Proteinose Alveolar Pulmonar/genética
13.
Sci Immunol ; 6(62)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413140

RESUMO

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.


Assuntos
COVID-19/complicações , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças do Sistema Imunitário/complicações , Receptor 7 Toll-Like/deficiência , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Receptor 7 Toll-Like/genética , Adulto Jovem
14.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34264265

RESUMO

Patients with autosomal recessive protein kinase C δ (PKCδ) deficiency suffer from childhood-onset autoimmunity, including systemic lupus erythematosus. They also suffer from recurrent infections that overlap with those seen in patients with chronic granulomatous disease (CGD), a disease caused by defects of the phagocyte NADPH oxidase and a lack of reactive oxygen species (ROS) production. We studied an international cohort of 17 PKCδ-deficient patients and found that their EBV-B cells and monocyte-derived phagocytes produced only small amounts of ROS and did not phosphorylate p40phox normally after PMA or opsonized Staphylococcus aureus stimulation. Moreover, the patients' circulating phagocytes displayed abnormally low levels of ROS production and markedly reduced neutrophil extracellular trap formation, altogether suggesting a role for PKCδ in activation of the NADPH oxidase complex. Our findings thus show that patients with PKCδ deficiency have impaired NADPH oxidase activity in various myeloid subsets, which may contribute to their CGD-like infectious phenotype.


Assuntos
Infecções/genética , Proteína Quinase C-delta/genética , Explosão Respiratória/fisiologia , Linfócitos B/enzimologia , Feminino , Humanos , Lactente , Infecções/tratamento farmacológico , Infecções/etiologia , Infecções/patologia , Masculino , NADPH Oxidases/metabolismo , Linhagem , Fagocitose , Fosforilação , Isoformas de Proteínas , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/metabolismo
15.
J Immunol ; 207(1): 133-152, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34183371

RESUMO

Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus Calmette-Guérin = 13, environmental mycobacteria = 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Linfo-Histiocitose Hemofagocítica , Infecções por Mycobacterium , Mycobacterium bovis , Humanos , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
16.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890986

RESUMO

Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti-IFN-ß and another anti-IFN-ε, but none had anti-IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Interferon Tipo I/imunologia , Pneumonia/imunologia , Poliendocrinopatias Autoimunes/imunologia , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adulto Jovem
17.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876776

RESUMO

Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.


Assuntos
Antígenos de Neoplasias/genética , Leucocitose/genética , Infecções por Mycobacterium não Tuberculosas/genética , Células A549 , Adolescente , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Criança , Grânulos Citoplasmáticos/metabolismo , Feminino , Células HEK293 , Células HeLa , Homozigoto , Humanos , Lactente , Interferon gama/metabolismo , Leucocitose/patologia , Masculino , Mutação , Infecções por Mycobacterium não Tuberculosas/patologia , Linhagem , Células THP-1 , Adulto Jovem
18.
J Clin Immunol ; 41(3): 639-657, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33417088

RESUMO

PURPOSE: Germline heterozygous mutations of GATA2 underlie a variety of hematological and clinical phenotypes. The genetic, immunological, and clinical features of GATA2-deficient patients with mycobacterial diseases in the familial context remain largely unknown. METHODS: We enrolled 15 GATA2 index cases referred for mycobacterial disease. We describe their genetic and clinical features including their relatives. RESULTS: We identified 12 heterozygous GATA2 mutations, two of which had not been reported. Eight of these mutations were loss-of-function, and four were hypomorphic. None was dominant-negative in vitro, and the GATA2 locus was found to be subject to purifying selection, strongly suggesting a mechanism of haploinsufficiency. Three relatives of index cases had mycobacterial disease and were also heterozygous, resulting in 18 patients in total. Mycobacterial infection was the first clinical manifestation in 11 patients, at a mean age of 22.5 years (range: 12 to 42 years). Most patients also suffered from other infections, monocytopenia, or myelodysplasia. Strikingly, the clinical penetrance was incomplete (32.9% by age 40 years), as 16 heterozygous relatives aged between 6 and 78 years, including 4 older than 60 years, were completely asymptomatic. CONCLUSION: Clinical penetrance for mycobacterial disease was found to be similar to other GATA2 deficiency-related manifestations. These observations suggest that other mechanisms contribute to the phenotypic expression of GATA2 deficiency. A diagnosis of autosomal dominant GATA2 deficiency should be considered in patients with mycobacterial infections and/or other GATA2 deficiency-related phenotypes at any age in life. Moreover, all direct relatives should be genotyped at the GATA2 locus.


Assuntos
Deficiência de GATA2/diagnóstico , Deficiência de GATA2/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Haploinsuficiência , Penetrância , Fenótipo , Adolescente , Adulto , Alelos , Linhagem Celular , Criança , Análise Mutacional de DNA , Bases de Dados Genéticas , Feminino , Deficiência de GATA2/epidemiologia , Genes Dominantes , Estudos de Associação Genética/métodos , Genótipo , Mutação em Linhagem Germinativa , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/etiologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium/diagnóstico , Infecções por Mycobacterium/etiologia , Avaliação de Resultados em Cuidados de Saúde , Linhagem , Sequenciamento do Exoma , Adulto Jovem
19.
Science ; 370(6515)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32972995

RESUMO

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Assuntos
Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Mutação com Perda de Função , Pneumonia Viral/genética , Pneumonia Viral/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Infecções Assintomáticas , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Feminino , Loci Gênicos , Predisposição Genética para Doença , Humanos , Lactente , Fator Regulador 7 de Interferon/deficiência , Fator Regulador 7 de Interferon/genética , Masculino , Pessoa de Meia-Idade , Pandemias , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , SARS-CoV-2 , Receptor 3 Toll-Like/deficiência , Receptor 3 Toll-Like/genética , Adulto Jovem
20.
Front Cell Dev Biol ; 8: 869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984345

RESUMO

In vitro transdifferentiation of patient-derived mesenchymal stem/stromal cells (MSCs) into neurons is of special interest for treatment of neurodegenerative diseases. Although there are encouraging studies, little is known about physiological modulations during this transdifferentiation process. Here, we focus on the analysis of gap junction dependent cell-cell communication and the expression pattern of gap junction-building connexins during small molecule-induced neuronal transdifferentiation of human bone marrow-derived MSCs. During this process, the MSC markers CD73, CD90, CD105, and CD166 were downregulated while the neuronal marker Tuj1 was upregulated. Moreover, the differentiation protocol used in the present study changed the cellular morphology and physiology. The MSCs evolved from a fibroblastoid morphology towards a neuronal shape with round cell bodies and neurite-like processes. Moreover, depolarization evoked action potentials in the transdifferentiated cells. MSCs expressed mRNAs encoding Cx43 and Cx45 as well as trace levels of Cx26, Cx37- and Cx40 and allowed transfer of microinjected Lucifer yellow. The differentiation protocol increased levels of Cx26 (mRNA and protein) and decreased Cx43 (mRNA and protein) while reducing the dye transfer. Cx36 mRNA was nearly undetectable in all cells regardless of treatment. Treatment of the cells with the gap junction coupling inhibitor carbenoxolone (CBX) only modestly altered connexin mRNA levels and had little effect on neuronal differentiation. Our study indicates that the small molecule-based differentiation protocol generates immature neuron-like cells from MSCs. This might be potentially interesting for elucidating physiological modifications and mechanisms in MSCs during the initial steps of differentiation towards a neuronal lineage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...